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Abstract
The standard errors of the 2 most widely used population-invariance measures of equating
functions, root mean square difference (RMSD) and root expected mean square difference
(REMSD), are not derived for common equating methods such as linear equating. Consequently,
it is unknown how much noise is contained in these estimates. This paper describes 2 methods
for obtaining the standard errors for RMSD and REMSD. The delta method relies on an
analytical approximation and provides asymptotic standard errors. The grouped jackknife
method is a sampling-based method. Both methods were applied to a real data application. The
results showed that there was very little difference between the standard errors found by the 2
methods.
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Introduction

Test equating methods are used to produce scores that are interchangeable across
different test forms. Lord (1980) and others (see Kolen & Brennan, 2004, for an overview) state
several requirements for equating. One of these requirements is the population invariance
requirement, which states, “The choice of (sub) population scores of tests X and Y should not
matter. In other words, the equating function used to link the scores of X and Y should be
population invariant” (Dorans & Holland, 2000, p. 28). As discussed by Dorans (2003),
population invariance is not only important in and of itself, but it also plays a key role in another
equating requirement, the equity requirement, which states, “It ought to be a matter of
indifference for an examinee to be tested by either one of two tests that have been equated”
(Dorans & Holland, p. 28). In short, population invariance and equity are interrelated, and equity
in equating cannot be achieved if population invariance does not hold. That is, the tests can only
meet the equity requirement and be equatable if it is not only irrelevant which test (of those
being equated) the examinee takes, but also which (sub)population of scores is used to obtain the
equating function.

Dorans and Holland (2000) proposed using two measures to determine if the population-
invariance requirement is met. One measure is the root mean square difference (RMSD), which
is defined as the RMSD between the subpopulation linking functions and the overall linking
function. That is, if scores y on test Y (i.e., the new form) are equated to scores x on test X (i.e.,

the old form) on a target population of examinees P, then

\/ch [er, (v)-eo (v)]
RMSD(y) = = ’

OXP
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where €R; is the equating function for subpopulation P, (=0, 1, 2, ..., C — 1) in population P,
€p is the equating function for the overall population P, W¢ is the weight assigned to

subpopulation P, and 9xp is the standard deviation of X for population P. (With some abuse of
notation, X and Y denote both the test and the random variable representing the score on the test

in this example.)



The RMSD is interpreted as an effect size is (Dorans & Holland, 2000). Specifically, it is
the amount of invariance of the linking function for subpopulation c to the overall linking
function. So, a value of .15 for RMSD(y), say y = 80, is interpreted as an RMSD of 15% of the
standard deviation of test X in P in the linking functions at score 80 of test Y.

Another measure of population invariance is the root expected mean square difference
(REMSD), which is defined as a summative measure of the values of the RMSD(y)

S weEp |ep, (¥) - ep (V)]
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where Ep{} is the expected value over Y .

The REMSD is interpreted similarly to the RMSD. For example, if REMSD = .30, then
the RMSD in the linking functions across the scores of test Y is, on average, 30% of the standard
deviation of test X in P.

The extent to which equating functions are population-invariant is commonly addressed
in terms of differences that matter (DTM), the differences in equated scores that are greater than
would be corrected for by the score rounding that occurs before score reporting (Dorans &
Feigenbaum, 1994). The DTM criterion is an indication of practical, rather than statistical,
significance of equating function differences (see von Davier and Wilson, 2006, for a discussion
of the various criteria for investigating population-invariance indices). If the population-
invariance requirement is met, then both the RMSD and REMSD should be lower than the
standardized DTM (SDTM), which is the DTM divided by the standard deviation of the old form
score (von Davier & Wilson; Dorans & Feigenbaum). This approach is illustrated in recent
papers by von Davier, Holland, and Thayer (2004b); Dorans, Holland, Thayer, and Tateneni
(2003); and Yang, Dorans, and Tateneni (2003).

When evaluating the RMSD and REMSD, their magnitude is not all that matters.
Information regarding the accuracy of the population invariance estimates is a valuable source of
information as well. It tells us the degree to which we can trust the estimates of the RMSD and
REMSD when deciding whether or not an equating function is fair and population-invariant.

That is, are the estimates close to their population values, or is there substantial noise in the



estimates? One way to answer this question is to examine the standard errors (i.e., the noise) of
the RMSD and REMSD. Little research has been conducted in this respect. A notable exception
is Moses (2006), which applied the delta method to obtain the asymptotic standard errors for the
kernel equating (KE) method in an equivalent-group (EG) equating design.

A first goal of this paper is to derive the asymptotic standard errors of the RMSD and
REMSD for the linear equating method in the EG design. Even though the linear equating
method can be seen as a limiting case of the KE method, and so in principle the results of Moses
(2006) could be used, we think it is worthwhile to present the derivations separately for the
widely used linear equating function. As in Moses (2006), the standard errors are derived by the
delta method.

A second goal of this paper is to present the sampling-based grouped jackknife method
(Efron, 1982; Efron & Tibshiriani, 1993) as an alternative way of estimating the standard errors
of the RMSD and REMSD. A main advantage of sampling-based methods is that no complex
derivations are involved. Even for the relatively simple case of linear equating in the EG design,
the analytical derivations become quite tedious using the delta method. If the results of the
jackknife method were close to the results of the delta method, the former could considered to be
a viable alternative to the delta method for computing the standard errors of the RMSD and
REMSD in more complex designs.

The remainder of the paper is organized as follows. After a short review of the linear
equating method, the delta method and the grouped jackknife technique for obtaining the
standard errors of the RMSD and REMSD are described. For ease of exposition, the methods are
described for the case of two subpopulations, but the results can be generalized to more than two
subpopulations in a straightforward way. Subsequently, both methods are illustrated with a real
data application. The effect of sample size is investigated in the following section. Conclusions

are drawn in the last section.

The Linear Equating Method
In the linear equating method, Y is equated to X scores using a linear equating function.

For each subpopulation c, the equating function is

O XP,
ep. (Y) = Hxp, *
: (V) ¢ oyp,
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where #XP; and 9 XP are the mean and standard deviation of X in subpopulation ¢, and #P, and

OYR; are the mean and standard deviation of Y in the subpopulation.
The population linear equating function is obtained by replacing the subpopulation means
and standard deviations with their population counterparts (denoted without the subpopulation

subscript c):

oxp

ep(Y) = uxp +—"—(y — tvp) | 4)
Oyp

In practice, the (sub)population means and standard deviations are unknown, and linear

equating proceeds by evaluating (3) and (4) in the estimated means and variances.

Asymptotic Standard Errors

Asymptotic standard errors can be derived for the RMSD and the REMSD of the linear
equating function in the EG design using the delta method (Bishop, Feinberg & Holland, 1975;
Kendall & Stuart, 1977). The delta method is an analytical method that can be summarized by
saying that, if a vector of parameter estimates 7 is asymptotically normally distributed (such as
maximum likelihood estimates under fairly general conditions), then a smooth function f of these
parameter estimates is also asymptotically normally distributed, with asymptotic variance-

covariance matrix
Var(f (7)) =3¢ (z)2(7) I (7). ()

where J ¢ (ﬂ') Is the Jacobian (i.e., the matrix of the first derivatives of the smooth function f

with respect to the components in z). In practice, the Jacobian is evaluated at the maximum
likelihood estimates of 7« .

For the linear equating function in the EG design and in the case of two subpopulations
Po and Py, the components of the vector parameter 7 are the means and variances of the two

variables X and Y in each of the two subpopulations, that is

!

_ 2 2 2 2
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and the role of the function f in (5) above is played by the RMSD and REMSD indices for the

linear equating function. The entries for J ¢ (7[) are given in the appendix.

2 is the 8 x 8 variance-covariance matrix of the vector parameter 7t and can be written

as

)

0 Var(ﬂ'yo)

0 [Vaf(”xﬂ 0 j ' )

0 Var(ﬂ'Yl)

Y =

The off diagonal contains 0 matrices because we assumed that the subpopulations are partitions

of P and that the groups were randomly drawn from P. Var(zxc) and Var(7yc) are the

covariance matrices of the components of the parameter 7t for subpopulation P, for tests X and Y,

respectively. More precisely, these matrices are represented as

Var(yxc) COV(”Xc"j)Z(C)

Var(ﬂ'xc) = ) )
Cov(axC "”Xc) Var(axc)

Var ( Ay, ) Cov ( g s GYZC )

Var (7Z'YC ) = ) )
Cov(aYC ) 1Y, ) Var(aYC )

(9)

The expressions for the entries for the matrices in (8) and (9) can be found in Kolen (1985; Table
2, estimates for the non-normal case).

The standard errors of the RMSD and REMSD are the square root of the variance.
However, conditions for applying the delta method may not be fulfilled everywhere because the
RMSD (REMSD) is not differentiable at 0, its value under the null hypothesis. This can be seen

in the entries of J ¢ (7:) , where the RMSD (REMSD) appears in the denominator. Note that the

delta method requires that the equating functions be continuous and differentiable almost

everywhere (Rao, 1973). The RMSD and REMSD functions are differentiable except on some



finite points with total probability of 0. This means that this requirement of the delta method is

actually met in this situation.

Sampling-Based Standard Errors

Standard errors for RMSD and REMSD can also be obtained using the grouped jackknife
method. Because the method is sampling-based, it can be easily generalized beyond the EG
equating design and the linear equating functions.

Suppose that one is interested in the standard error of a statistic T computed on a sample
of size N, but the reference distribution of T is unknown. Alternatively, the reference distribution
of T may be known asymptotically, but N may not be large enough to rely on an asymptotic
result. In our case, the RSMD and REMSD play the role of T.

The grouped jackknife technique is, like the bootstrap, a sampling-based technique that
can be used to obtain standard errors for a statistic T whose reference distribution is unknown. In
sampling-based techniques, multiple samples are drawn from the original dataset, T is estimated
in each of these samples, and the variation of these estimates over the samples is used to
approximate the true standard error of the T (Efron, 1982; Efron & Tibshirani, 1993).

In the bootstrap technique, samples of size N are drawn with replacement from the

original sample, whereas in the grouped jackknife method, g groups of size h, with N = ah  are
drawn without replacement from the original dataset. That is, the sample is randomly split into g

groups of size h. Grouped jackknife standard errors are then obtained as follows:

1. Compute the statistic of interest, Ti for the i™ group (i = 1, ...g), which is the total

group with the i"™ block of h observations removed; and

2. Calculate the variance of the estimator as

13
Var(T) = Z( ) (10)
9 i=1
- 1
where T = azTi (11)

In this report, the statistics of interest are the RMSD and REMSD.
The larger the number of groups g that is chosen, the more precise the estimate of the

standard error will be, but computation time will increase as well.
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As was the case for the delta method, conditions for applying the jackknife method may
not be fulfilled everywhere due to the fact that the RMSD is not differentiable at 0, its value
under the null hypothesis.

In the next section, both the delta and grouped jackknife methods for obtaining the

standard errors of the RMSD and REMSD are applied to a real data set.

Real Data Application: A Professional Licensure Study

The data consisted of two randomly equivalent samples (i.e., an EG design) that took one
of two forms (X and Y) of a professional licensure examination (consisting of 40 dichotomously
scored items). In the operational administration, Forms X and Y were spiraled to achieve
randomly equivalent samples. For the purposes here, the subpopulations of interest were chosen
to be males and females. Examinees who did not provide their gender were removed from the
data. Table 1 provides the descriptive statistics of the final data. As shown, slightly more
examinees took Y than X, and roughly four times more females than males took each form.

In general, Forms X and Y have similar negatively skewed distributions (Figures 1 and 2),

but Form Y was slightly easier than Form X. For both forms, males performed slightly better than

females.
Table 1
Descriptive Statistics for the Raw Scores of Forms X and Y
Std. o ) )
Form Group N Mean 4 Minimum Maximum Skew Kurtosis
ev.
X Female 4,221 29.16  7.17 6.00 40.00 -0.64 -0.29
Male 1,186 30.25  7.12 6.00 40.00 -0.86 0.11
Total 5,407 29.40  7.17 6.00 40.00 -0.68 -0.23
Reliability .88
Y Female 4,250 3047 7.27 4.00 40.00 -0.89 0.03
Male 1,139 3150  7.07 8.00 40.00 -1.01 0.34
Total 5,389 3069 7.24 4.00 40.00 -0.91 0.09
Reliability .90
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Figure 1. Raw score frequencies on X.
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As illustrated in Figure 3, for scores on Y that are less than 22, the equating function for
males was slightly lower than the equating functions for females and for the total group (which is
dominated by females). For scores at or above 22, the differences between equating functions
were small. As can be seen in Figure 4, the RMSD never exceeded the SDTM. The RMSD was
never larger than 0.05, whereas the SDTM was 0.07 (SDTM= DTM/oyx ~ .5/7.17 = .07) The

REMSD (not shown) was also small, with a value of 0.01.

No Difference

——— Males -— -Females

Difference

7\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\
O 1 2 3 45 6 7 8 91011121314151617 18192021 2223242526 27 2829 30 31 3233 34 35 36 37 38 39 40

Score on Y

Figure 3. Difference in equated scores between males and total group (ePO - eP) and

females and total group (epl - eP) equating functions.

Based on the estimated values of the RSMD and REMSD, the equating function is likely
to be interpreted as population-invariant. The confidence with which this conclusion can be
drawn based on the estimated RMSD and REMSD depends to a large degree on how accurate

these estimates are. This brings us to the standard errors of the two measures of population



invariance. More specifically, confidence intervals can be constructed based on the standard
errors. If the DTM is larger than the upper bound of the confidence interval of the RMSD or
REMSD, the equating function can be viewed as population-invariant (at a particular score point
for the RMSD). On the other hand, a DTM that is smaller than the upper bound of these
confidence intervals casts some doubt on the population invariance of the equating function,
even if the actual estimated RMSD or REMSD is smaller than the DTM.
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Figure 4. RMSD for the linear equating function.

Standard errors were computed with the two methods presented in this report: the delta
method, which provides asymptotic standard errors; and the grouped jackknife method, which is
a sampling-based method. For the latter, results in this section are based on g = 100 jackknife
groups. This choice for g resulted in fairly stable estimates of the standard errors that could be
computed in a reasonable time (less than a minute). With respect to the REMSD, the asymptotic

standard error is very similar to the sampling-based standard error, with a rounded value of 0.02
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for both methods With an SDTM of 0.07 and an estimated REMSD of 0.01, we can be rather
confident that the true REMSD is smaller than the SDTM and therefore that the equating
function is population-invariant over the whole range of the scores.

The asymptotic and sampling-based standard errors for the RMSD are displayed in
Figure 5. Both methods give very similar standard errors that range between .01 and .10, where
the absolute difference between the standard errors is never larger than .01. Note that for both
methods, the estimated standard errors show a sudden dip in the score range 27 to 30. This may
be because the RMSD becomes very small in that range (see Figure 4). As mentioned before, the
RMSD is not differentiable at 0, which is a regularity condition for both methods. Contrary to the
results for the REMSD, taking into account the standard errors for the RMSDs casts some doubts
on the population invariance of the equating function, because the DTM of 0.07 is smaller than

the upper bound of the confidence interval of the RMSD for most score points.
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Figure 5. Asymptotic and sampling-based standard errors for the RMSD.
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Figure 6 displays the asymptotic and sampling-based standard errors for the RMSD for
the different sample sizes. For all sample sizes, both types of standard errors are very close to
each other. A similar result was obtained for the REMSD; the asymptotic standard errors
amounted to 0.10, 0.06, and 0.04 for sample sizes of 500, 1000, and 2500, respectively, and the

sampling-based standard errors amounted to 0.12, 0.06, and 0.05.
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Figure 6. Asymptotic and sampling-based standard errors for the RMSD for different

sample sizes.

Discussion
The purpose of this paper was to obtain and examine the standard errors of the RMSD
and REMSD, two measures of population invariance of the equating function. Using the delta
method, we derived the asymptotic standard errors of the RMSD and REMSD in the context of

12



linear equating in an EG equating design. In addition, we obtained sampling-based standard
errors using a grouped jackknife procedure. Assessing the accuracy of the RMSD and the
REMSD in this way is important in determining their reliability in drawing conclusions such as
whether or not a particular equating function can be applied to the whole population or only to a
subset of the population.

Using a large dataset obtained from an operational administration of a licensure exam, the
delta method and the grouped jackknife method both indicated that caution is merited when
using RMSD and REMSD to conclude that an equating function is population-invariant. Even
though both the RMSD and REMSD were consistently below the SDTM, when 95% confidence
intervals were constructed for the RMSD, it exceeded the SDTM at most score points.

The asymptotic standard errors of the delta method were very close to the sampling-based
standard errors of the grouped jackknife method. Hence, sampling-based standard errors could be
used as a viable alternative to asymptotic standard errors. This is an important result because the
derivations for the delta method become quite tedious for designs more complex than the EG
design and for equating functions more complex than the linear function. For sampling-based

methods, these extensions are straightforward.
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Appendix
This appendix provides the entries for J ¢ (), that is, the first derivatives of the RMSD

. . . 2
and REMSD with respect to the parameters in the parameter vector 7z (i.e., #Xq, X Mg,

2 2 2 . . . . .
%y HX1, 9%, 1, and Oy, ). Specifically, first, two key pieces of the partial derivatives are

obtained. These are the partial derivatives of €p and R, with respect to z . Next, using these
key pieces, the partial derivatives of the RMSD are obtained. And finally, the partial derivatives
of the REMSD are obtained.

To begin, recall from (1) and (2) that the RMSD and REMSD were defined as

\/ch [ep, () —ep (v)]
RMSD(y) = =

OXp

and

C

\/ZWCEP {[epc (Y)-ep (Y)T}
REMSD = ’

OXp

respectively. Hence, to obtain the derivatives of the RMSD and REMSD with respect to 7z, the
derivatives of the linear equating functions for the subgroups (ePC) and population (eP) are also
needed.

For €p, the means are obtained from the subpopulation means as

Hxp = WY 0HxRy T WXI1HXRA (A1)

which illustrates that the population mean is a sum of the weighted subgroup means and in which

the weights (W;o and w§<1) are defined as the subgroup proportions in the population for test X.

Additionally, a>2<p is defined as

16



2
2 * 2 * 2 * *
oxp = Wxoxpo + Wx10Xp1 + Wx0Wx1(ﬂxpo - ﬂxpl) (A.2)
which illustrates that the population variance is the sum of the weighted subgroup variances and
the weighted, squared difference between the subgroup means (Kolen, 1985).
Similar relationships hold for test Y, but instead, W§(0 and W’;(l for test X are replaced
with w¢0 and W:;l for test Y, 0>2< is replaced with 03 , and Ax is replaced with #y .

Using these relationships, the partial derivatives of €p with respect to z are

oe Wy oWy 1 Hxpy ~Hxm ) |y - *
- P _ ( ) Hy Wy o (A2)
KXo oxp

which can be simplified to

dep wy oW;<1(ﬂxpo - ﬂxpl)

= Zyp + W§<o, A3
X, OXp (A3)
where
Y~ Mvp
Zyp = v (A4)
oe Wy oWy 1 Hxry — Hxpy *
P Po=- ( ) Zyp + Wx1, (A.5)
Hxq OXp
oep __ O-XPWYOWYI(IUYPO - IUYEL) on — O'XPW’YCO
oy 2 YP o , (A.6)
0 oYp Yp
0 (UXPWSWI(/JY — Iy )\ )
ep B 5] R oxpW
YV 5 yp —— —, (A.7)
] ovp ovp
oe Wi
2p =(2 %0 JZYP, (A.8)
8GX|30 oxp
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6ep W;(l
2 |3 Zvp
aGX P1 OXp

oep  _ _[WYOO_XP]ZYP

2 2

doypg 20vp
and

Gp  _ _| Wy1oxp |,
5 2 5 2 YP

oYp1 ovp
For €R. , the partial derivatives with respect to 7z are
aePC =1
uxp,
Opc _ _ Oxpc
Optyp, Oype
é’epc _( 1 \Zyp

- C

80')2<pc kZO'xch '
O&pc __( UXPC\ZYP

2 \208,) ™
doype 20Yp¢
Oepo _ Oepo _ epo _ %epp _
Ouxp — Omym  dokpy  Ooyp

and

Cepy _ Oepy _ Oepr _ Gepr _

2 T o2
Ouxpy  Omymy dogpo  00ypo

Partial Derivatives of the RMSD With Respect to 7z

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

Using the previously mentioned partial derivatives and the quotient and chain rules of

derivations, the partial derivative of the RMSD with respect to HX is obtained
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ORMSD

Ot xpy
[ Wxowxa(xmy — txa ) RMSD +| — |
G)Z(P O'XPRMSD
5| telee -] [0 [ vhorialom —ma)),
c Oxp 0 OXP a i

(A.18)

where Ig?) is a dummy variable, in which the subscript ¢’ is a dummy coded symbol for the

subgroup for which the function is being derived and the superscript c is a dummy coded symbol
for the subgroup considered in the summation. That is, define

I(C) )0 ifc=c’
¢ |1 ifc=c" (A.19)
To simplify the expression, let
O = 1
= RMSD (A.20)

Another way to conceptualize @ is as the similarity between the subpopulation linking functions
and the overall linking function across the score scale.
Additionally, define the weighted, standardized difference between the equating

functions for subpopulation ¢ and the total population as (Ac)

weep, (v) -ep (V)]

OXp

Ae (A.21)

Substituting (A.20)-(A.21) into (A.18) yields the following
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Wy oW1 ( £ixpy — 4
ORMSD _ | Wxo x1( ;(Po xpl) RMSD+( @ JX
a/uXFb oxp OXp

. % (A.22)
onWx1(/pro - #xa)

OXP

C *
ZACX |(())— Zyp — Wxoqo | |
c
which illustrates that the derivative of the RMSD is primarily a function of the RMSD itself;
relative sample proportion ; the precision of the equating functions (CD); the weighted,
standardized difference between the equating functions (Ac) ; and the standardized scores on the

form that is being equated (ZY ) :

Using a similar approach, the following partial derivatives are also obtained:

Wy oW1 ( xRy — Hx
ORMSD _ ( oLl 2) RMSD+[ ¢ jx
a/UXI:3|_ oxp OXp
r W (,u p ) (A.23)
XOWXI\H# Xy — #X *
ZAC X |£C) + i il Zyp — Wx1 | |s
c oxp
RMSD [ @ jx
TN oxp
i * ok B * (A.24)
A I(C) —OXP0 O-XPWYO\NYl(:uYH) :uYP_L) oxpWo
Z ¢ X 0 + 5 yp + ——— | |
c OYPO oYp oyp
RMSD [ @ jx
Ouyp oXp
i * _ * (A.25)
2 A x| 1 5 Zyp + ,
c oyYp1 oyp oyp
ORMSD W;O @ |(()C)ZYPO W’;(OZYP |
5 =— 5 RMSD + X ZAC X — , (A.26)
8axp0 ZO'XP oxp c 2UXPO 2O-XP
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* I(C)Z *
ORMSD _ —[ WX1 |RMSD + | 2 jx Sag x| L PL BB 1| o
c

00Zpy 20%p oXp 20xp1  20%p
oRMSD [ @ e o)f o
5 =[ jx ZAC X WYO—ZXP Zyp — Ig ) X2PO ZypQ | | (A.28)
dovpo oxP) | ¢ 20yp 20ypg
and
ORMSD c)| o
> :[ J ZA WYl XP 1 2vp — |1( ) % Zypy | |- (A.29)
doypy oXP 207p 20yp1

Partial Derivatives of the REMSD With Respect to &
Similarly, and again using the previously mentioned partial derivatives, the quotient and

chain rules of derivations, and the rules of expectations, the partial derivative of the REMSD

with respect to HXg IS

OREMSD onWx1(ﬂxpo - ﬂxpl) REMSD J{ 1 jx

a/,lxpo 0')2(p O'XPREMSD
W ( ) (A.30)
c XOWX 1\ Hxpy — HXRA *
ZEP ACX |(())— ZYP—WXO
OXp
To simplify the expression, define ¥ as the inverse of the REMSD
po_ L

which can be conceptualized as the expectation of the similarity between the subpopulation
linking functions and the overall linking function across the score scale.
Substituting (A.31) into (A.30) yields

21



W;<0W§<1 Hxpy — HX
GREMSD:_ ( 2PO pl) REMSD+[ ¥ jx
a/JXF’O oxp Oxp

wy 0W§<1<ﬂxpo - ﬂxpl)

OXp

(A.32)

C *
ZE:EP AC X |é )'— Zyp —-VVXO
C

Using a similar approach, the following partial derivatives of the REMSD are also

obtained:

OREMSD Wx0Wx1(ﬂxpo —ﬂxpl)

REMSD +[ ¥ jx
oXp

OLxR oxp
. (A.33)
S Ep A x Il(c)+ onWx1(ﬂxpo —ﬂxa) 2o — Wiy |4
c OXp
OREMSD :( ¥ ]X
Oty oxp
L e
(A.34)
OREMSD z( ¥ jx
Oy oxp
ZC:EP Ag x Il(c) —;7\:;51_ UXPV\’YOV"Y;(;YPO ﬂYFfL) ZYP+JX#\;W1 1
(A.35)

* I(C)Z *
aRE';/'SD = - WX20 REMSD+[ ¥ jx > Ep{A¢ x| 2YPO _ TX0HP ||
8GXPO ZO'XP OXxp c 2GXF’O 2O-XP

(A.36)
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* I(C) *
6RE';/'SD =- Wél REMSD +[ j ZEP o x| 2P WxaZvp ||
aO'XP]_ ZO'XP OXp 2O-XF’]. 2O-XF’
(A.37)
OREMSD c)| o
5 :( j ZEP Ag % [[VWO XP} vp — |(() )[ X2PO JZYP()] ' (A.38)
doypg oXP 2005 20vp
and
OREMSD (10 o)f o
= (G j ZEP Ag % HW” ZXPJZYP '1( )L%J ZYpl} - (A39)
doyp1 XP 20vp oYp1
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